翻訳と辞書 |
Mean-periodic function : ウィキペディア英語版 | Mean-periodic function In mathematical analysis, the concept of a mean-periodic function is a generalization introduced by Jean Delsarte, of the concept of a periodic function.() Consider a complex-valued function ''ƒ'' of a real variable. The function ''ƒ'' is periodic with period ''a'' precisely if for all real ''x'', we have ''ƒ''(''x'') − ''ƒ''(''x'' − ''a'') = 0. This can be written as : where is the difference between the Dirac measures at 0 and ''a''. A mean-periodic function is a function ''ƒ'' satisfying (1) for some nonzero measure with compact (hence bounded) support. == External links ==
* (Lectures on Mean Periodic Functions, by J. P. Kahane )
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Mean-periodic function」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|